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Rapid, cost-effective and accurate 
determination of in-situ stiffness 
using MASW at Bothkennar
M. Long, S. Donohue (University College Dublin, UCD) and P. O’Connor 
(APEX GeoServices, Gorey, Co. Wexford, Ireland)

G eophysical techniques and, in particular, seismic methods have received 
considerable attention in civil engineering over recent years, their role 
steadily increasing to the point where they play an important part in 

material characterisation and engineering design. This popularity arises 
from recent advances in both computational power and the geophysical 
techniques themselves. Furthermore, many geophysical methods are non-
invasive which make them well suited and cost-effective in profiling spatially 
and temporally. 

From a geotechnical engineering perspective the most popular geophysical 
techniques are seismic methods, possibly because they may directly measure 
a mechanical property, soil or rock stiffness. This usually involves strains of 
10-3 % and less. The measurement of stiffness at this magnitude of strain 
is important for deformation prediction, as strains associated with most 
soil-structure interaction problems are generally less than 0.1% (Jardine et 
al., 1986). It has been shown by Stokoe et al., (2004) that stiffness-strain 
curves for a range of materials may contain considerable error if small strain 
stiffness values have not been incorporated. A significant overestimation of 
deformation may result, which could substantially increase the cost of a 
project. According to elastic theory the small strain shear modulus, Gmax, 
may be calculated from the seismic parameter, shear wave velocity, using the 
following equation:

Gmax = ρ.Vs2 (1)

where Gmax = shear modulus (Pa), Vs = shear wave velocity (m/s) and � = 
density (kg/m3).

Recently several researchers, for example: Park et al (1999), Donohue et 
al., (2003, 2004) for very stiff Irish glacial till and very soft clays and silts from 
central Ireland respectively; Long and Donohue (2007), for eight Norwegian 
research sites; and Donohue and Long (2008) have shown that Vs (and hence 
Gmax) can be obtained cheaply and reliably using the Multichannel Analysis 
of Surface Waves (MASW) method. An opportunity arose to test and further 
assess the technique at the UK national soft clay research site at Bothkennar. 
The purpose of this note is to summarise the data recorded and to compare 
the resulting Vs measurements to other parallel data. 

MASW technique
In geotechnical engineering, the most widely used surface waves are Raleigh 
waves that travel along the earth-air interface with a retrograde elliptical par-
ticle motion. Surface waves are very easy to detect as approximately two-
thirds of the total energy from a vertical point source on the surface propa-
gates in the form of Raleigh waves (Miller and Pursey, 1955).

Surface waves are dispersive, that is, in a non-uniform media, the 
propagation velocity of a surface wave is dependent on the wavelength 
(or frequency) of that wave. Surface waves with short wavelengths (or 
high frequencies) will be influenced by material closer to the surface than 
those with longer wavelengths (or low frequencies), which reflect properties 
of deeper material (Figure 1). Therefore by generating a wide range of 
frequencies, this principle is used at each site under investigation, to produce 
plots of velocity against frequency (or wavelength) called dispersion curves.

A number of different surface wave techniques are available and currently 
in practical use worldwide. These are the Continuous Surface Wave (CSW, 
Mathews et al., 1996), the Spectral Analysis of Surface Waves (SASW, 
Nazarian and Stokoe, 1984) as well as the more recent Multichannel Analysis 
of Surface Waves (MASW) approach. Each of these approaches utilise the 

dispersive nature of surface waves to evaluate the elastic stiffness properties 
of the subsurface. The basic procedure for each of these techniques is divided 
into three stages (a) data acquisition, (b) dispersion curve evaluation and (c) 
inversion of the dispersion curve. This is illustrated in Figure 2.

The technique used in this study, the MASW approach, was introduced 
in the late 1990s by the Kansas Geological Survey (Park et al., 1999). As 
the name suggests this approach uses a multiple of equally spaced receivers 
(usually 12 to 60) that are deployed on the surface along a survey line. Each 
receiver is connected to a common multichannel recording instrument 
(usually a seismograph). This is the most significant difference between the 
CSW, SASW and the MASW techniques, both of which are usually based on 
a two-receiver approach. Also the MASW and SASW approaches generally 
use an impulsive source, such as a sledgehammer, to produce surface waves, 
whereas the CSW approach makes use of a frequency controlled vibrator. 

The most significant advantage of the MASW approach is the ability of 
the technique to identify and separate fundamental and higher mode surface 
waves. This is particularly important on inversely dispersive sites (that is 
where a stiff layer overlies a softer layer, for example, ground improvement, 
pavement) and sites with large stiffness contrasts (for example, shallow 
bedrock). The MASW field procedure is also not as time and labour intensive 
as the SASW method, only requiring a single shot gather. The SASW approach 
involves several measurements at different source-receiver configurations. 

The MASW technique may cost as little as £125-£175 per profile, which 
includes site work and all associated reporting.

 
Testing at Bothkennar
A summary of the test parameters used at Bothkennar is shown on Table 1. 
The location of the tests was within the BRE test area as shown on Figure 3. 
Data from two perpendicular MASW profiles was acquired. A picture of the 
MASW works being performed at this location is shown in Figure 4.

Figure 1. Approximate distribution of vertical particle motion with 
depth for two Raleigh Waves with different wavelengths (adapted 
from Stokoe et al., 1994)

Air

Uniform
half space

Particle motion

λ R1

λ R2

Particle motion

Depth Depth

(a) Material
profile

(b) Shorter
wavelength λ R1

(c) Longer
wavelength λ R2



44 GROUND ENGINEERING NOVEMBER 2008

TECHNICAL PAPER

Results from Bothkennar
At least five investigations have been carried out at the Bothkennar research 
site for the purposes of determining shear wave velocity (Vs) and this com-
prehensive database allows an assessment of the reliability of the various 
techniques used. These two surface wave techniques and the investigations 
were carried out by:
1. University of North Wales (UNW) (Hepton, 1988): seismic cone (SCPT) 
and seismic dilatometer (SDMT)
2. UK Building Research Establishment (BRE) (Powell and Butcher, 1991, 

Powell, 2001, Hight et al. 2003): cross-hole and SCPT
3. Surrey University (SU) (Hope et al., 1999, Sutton, 1999): cross-hole
4. GDS Instruments Ltd. (Sutton, 1999): Continuous Surface Wave (CSW)
5. UCD (This note): MASW.

All of the available data are shown on Figure 5. In Figure 5a a comparison 
is made between the two sets of SCPT data and the UNW SDMT results. 
The agreement is very good. Figure 5b shows the cross-hole data from BRE 
and SU. The subscripts refer to the directions of propagation and wave 
polarisation respectively. The BRE work was carried out using conventional 
down-hole equipment, whereas the SU investigation included a novel 
technique for the determination of Vhn where the source was at the surface.

A clear implication of the data on Figure 5b is that the natural anisotropy 
of small strain stiffness of Bothkennar clay is very low. This has recently been 
confirmed by multi-directional bender element tests by Bristol University on 
high-quality block samples of the clay (Nash et al., 2006 and Sukolrat, 2007). 
Also shown in Figure 5b is the error of ±8% associated with the cross-hole 
work suggested by Sutton (1999). It can be seen that the agreement between 
the various sets of data is good and the scatter is generally of the same order 
of magnitude as the expected error. 

Figure 2. Outline procedure of the MASW technique: 
(a) Acquisition of multichannel surface wave data, which includes the generation of surface waves using an impulsive source, their 
measurement using low frequency geophones and recording of the data using a multichannel seismograph. An example of some surface 
wave seismic data acquired at Bothkennar is provided here.
(b) Evaluation of a site dispersion curve from a dispersion image (Park et al., 1999). This particular image for Bothkennar clay is 
dominated by the fundamental mode of propagation.
(c) Inversion of the dispersion curve (Xia et al., 1999) to produce a sub-surface profile of shear wave velocity.

Table 1. Summary of MASW test parameters
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Figure 4. MASW testing at Bothkennar

Finally on Figure 4c the UCD MASW data and the GDS Instruments 
CSW data are compared with the BRE SCPT results. Again the agreement 
is excellent. In the MASW tests the use of low frequency (4.5Hz) geophones 
in MASW 2 only resulted in a marginal increase in the depth of penetration 
over MASW 1. 

Donohue and Long (2008) observed fundamental mode Raleigh waves 
at frequencies as low as 4Hz, even when using geophones with a natural 
frequency of 10Hz. The use of low frequency 4.5Hz geophones may not, 
therefore, always result in an increase in depth. 

The depth of penetration of the CSW approach was clearly limited in this 
case. It should also be noted that little or no difference was observed between 
the two perpendicular MASW profiles.

Conclusions
The important implication of the results presented above for practicing engi-
neers is that in-situ shear wave velocity (and hence Gmax) can be measured 
easily and reliably by a variety of methods. The results seem to be relatively 
independent of the technique used (having accounted for natural material 
anisotropy) and of the operator. The MASW surface wave technique pro-
vides a rapid, cost effective and reliable approach to obtaining such data.
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Figure 3. MASW profile locations at Bothkennar in addition to 
locations of previous investigations (amended map from Hight et al., 
1992).

Figure 5. Vs data from Bothkennar: (a) BRE and UNW SCPT and SDMT, (b) BRE and SU cross-hole and (c) surface wave techniques
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